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LETTER TO THE EDITOR 

Compensation effect of one-dimensional disordered potential 
wells and barriers in the presence of an electric field 

N Z!ait§, M Schreiberl and R Ouastif. 
t lnstitut fb Physik, Technische Univemit5t Chemnitz-Zwickau, D-09107 Chemnie, Germany 
t Labratoire de Physique Electronique du Solide USTO. Ddpmement de Physique, BP 1505, 
Oran El Mnaouer, Algeria 

Received 17 March 1995 

Abshet.  We study the origin of the compensation in disordered mixed systems of the Wannier- 
Sta& ladder effects observed previously as strong jumps of the transmission coefficient in 
ordered and disordered systems with potential wells and barriers subjected to a bias voltage. 
me onedimensional Kronig-Penney model is used to investigate this problem by means of the 
transmission coefficient. We found that the band spectrum of the systems with barriers is shined 
in comparison with the eormponding spectra of those with weUs. Therefore the delocaliion 
of each system in an eleceic field corresponds to the localiration of the other. We found also 
that the disorder consemes the bandwidth of the ordered system if the average potential strengUl 
corresponds to the potential strength of this system. 

The electronic properties of onedimensional (ID) systems have been the subject of a 
continuous interest in solid state physics [l-91. Among the new technological advances, in 
particular the ability to fabricate man-made thin wires and ID heterosmctures led to very 
interesting electronic features [lo, 111. 

The disorder has been shown for a long time to localize the electronic states [1,2] 
and one and two-dimensional disordered systems were expected to become insulators [3]. 
However. recently, some models of disorder introducing correlations [7,9] and non-linearity 
[SI yielded extended states for particular energies, meaning that the disorder can also provide 
constructive quantum interferences. 

The electric field has been found to delocalize the electronic states of disordered ID 
systems [4-6] while in ordered systems a Wannier-Stark ladder effect 1121 breaks the quasi- 
continuum levels leading to their localization and to the formation of singular resonances 
observed in the transmission coefficient by jumps. In such cases the differential resistance 
of the system becomes negative. 

However, in disordered systems mixing uniformly both potential barriers and wells, the 
latter effect in an electric field has not been clearly seen in the transmission coefficient (T) 
[MI. Recently 1131, we found strong jumps of T in disordered systems with either wells 
or barriers corresponding to this effect and occurring regularly at the Brillouin zone edges 

E + eFL = n2(n/a)’ (1) 
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where E is the electron energy, e the electron charge, F the electric field and L the chain 
length with a lattice parameter a. Furthermore, we found that for lengths before the first 
jump of T, the field increases the localization for the systems with potential wells instead 
of delocalizing them. The transmission coefficient in these cases fits the following form 
well: 

T a exp(-Lp(R) P(F) z 1 with ~(0) = 1 (2) 
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Figure 1. Energy s p c t ”  of the ordered systems with wells or barriers for different potential 
strengths as a function of the momentum in units of nJo. Hatched regions correspond to the 
allowed bands. 

More recently [14]. we showed that this effect does not occur for all systems with wells 
and depends on the electron energy and the disorder (or the potential strength in ordered 
systems). Furthermore, in examining the effect of the electric field on ordered systems with 
potential wells, we found that the jumps of T and the ‘superlocalization’ (given by (2)) 
yield at opposite sides of the allowed bands. The former effect occurs in the allowed bands 
near the Brillouin zone edges (where resonant tunnelling yields a transmission coefficient 
identical to unity). In this case the energy levels are shifted by the field and discrete resonant 
states appear. Furthermore, the transmission coefficient oscillates with a decreasing period 
with increasing chain length. The superlocalization effect occurs in the gaps near the other 
edge of the allowed bands. 

In this letter, we examine such effects in the systems with barriers where the bands are 
seen to be shifted in comparison with those in the systems with wells. The effect of the 
disorder on the band structure of these systems is also shown by means of the transmission 
coefficient. This leads us to study why the jumps in the transmission coefficient that were 
observed in the systems with wells and barriers separately are compensated in the disordered 
mixed systems. 

The model has been described in detail previously [13,14]. We consider a linear finite 
chain of N atoms equally spaced with &peak potentials of random slrengths E. uniformly 



Letter to the Editor 

(4 

-10 

-20 - 
w 
I 

9 
-30 

-40  

- 5 0  

(a) O 

-10 

-20 - c 
3 

-30 

-40 

- 5 0  

. . . ...... .,..... . . .. . ....... .. 

- 

- 

- 

- 

U77 

Figure 2 Effect of the elecbic field on the ordered systems with barriers ( E  = 1). Transmission 
mefficient verms the momentum in units of n/a. The momentum kn = varies by 
fixing the field and varying: (a) the energy for L = 5W, F = 0 (solid w e )  md F = 0.01 
(dashed curve): (b) the chain length for E = 8 and F = 0.01. 

distributed in the three following cases: 

E,, E [-W, 01 (random wells) 

E,, E [O, W] (random barriers) (3) 

cn E [ - W / 2 ,  WIZ] (mixed systems) 

where W is the disorder. A bias voltage V = FL is applied to the chain with a length 
L = N (the electron charge e and the lattice parameter a are assumed here to be unity 
and the energy is measured in units of h2/2m). The two ends of such a chain axe assumed 
to be connected to ideal conductors in which the states are plane waves. The Schrijdinger 
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equation in the Kronig-Penney model is discretized into a finite difference equation by 
means of the Poincarb map representation in the ladder approximation: 

The ladder approximation is valid only for small fields Fn << E. For strong fields we 
can use the well known multi-step-function approximation [15] which is very accurate and 
consumes less computer time than the exact solutions of the Schrodinger equation (which 
are like Airy functions). 

The transmission coefficient is the quantity of interest here and can be obtained from 
the numerically computed wavefunctions in a straightforward manner [13]. 
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Fw 3. EEecl of the disorder on the transmission coefficient for E = 8. comparing ordered 
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Figure 4. Tmsmission mefficienl as a fuoion of the momentum in units of x l o  fa disordered 
mixed systems with W = 2. 

In the absence of an electric field, the band width of ordered systems is shown in figure 1 
as a function of the potential strength W (i.e., E. = W). We can see from this figure that 
the edges of the Brillouin zone (vertical solid lines) correspond to the beginnings of the 
allowed bands in the systems with wells while they correspond to the ends of the allowed 
bands in systems with barriers. This is also clearly shown for the transmission coefficient 
in figures 2(a) and (b)  (solid curves) where the gaps correspond to an abrupt drop. 

In applying an electric field to the systems with barriers, we see the two effects (the 
jumps of T and the superlocalization) both above the Brillouin zone edges (figure Z(Q)). 
The transmission coefficient first decreases in the gap, and in the allowed bands it oscillates 
and a WannierStark ladder effect results (figures Z(a) and (b). In the systems with wells, 
these effects have been found on both sides of the Brillouin zone edges. Therefore such 
effects are shifted in the systems with barriers in comparison with those with wells. 

On the other hand, in figure 3 the disorder decreases the transmission coefficient inside 
the allowed bands and then discrete resonances appear due to the localization effect. This 
effect occurs both for the systems with barriers (figure 3(a)) or wells (figure 3(b)). We can 
see also from figure 3 that the gap is not affected by the disorder if the potential strength 
of the ordered system is equal to the average potential strength of the disordered one. 
Furthermore, these figures confirm that in the allowed bands the transmission coefficient 
approaches unity at the Brillouin zone edges independently of the disorder [14]. 

Therefore, in combining the effects of the disorder and the electric field in the systems 
with barriers and wells, we obtain a compensation of the jumps of T in the disordered 
mixed systems because the region of the delocalization of each pure system corresponds to 
the region of localization of the other one. Indeed this is clearly observed in figure 4 where 
the gaps have disappeared. Although i t  seems to remain in these systems a small decrease 
of the transmission coefficient corresponding to the first jump is expected when applying 
an electric field. Obviously, this decrease disappears for higher energies. This is the reason 
why Cota et ~l 161 have observed only one jump. 

In conclusion, by examining separately systems with wells or barriers we have observed 
that the band spectrum of each system is shifted in comparison with the other one. Therefore 
in an electric field the localization effect in each system is compensated by the delocalization 
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of the other one when they are mixed. Furthermore, the jumps of T have been shown to 
decrease when the eleceon energy increases 1131. This is the reason why only one jump 
has been observed previously in the mixed systems [SI. 

However this effect may be controlled by varying the concentration of one type of 
potential (barriers or wells). It is also interesting to study this effect for potentials with a 
finite width This shall be the subject of forthcoming work. 

One of us (NZ) would like to thank the members of the Institut fiir Physik of the Technische 
UniversitXt Chemnitz-Zwickau. where the major part of this work has been done, for their 
hospitality. 
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